

DUCTILE IRON D SERIES STAINLESS STEEL S SERIES BUTTERFLY VALVES

1½"-12" 200 PSI Bi-Directional Service 14"-24" 150 PSI Bi-Directional Service Up to 48" Available

3 Year Limited Warranty MAS-BFV-17.04

Contents

Ordering Guidelines & Trim Codes

D Series Butterfly Valves Ductile Iron Body, Lug & Wafer Style

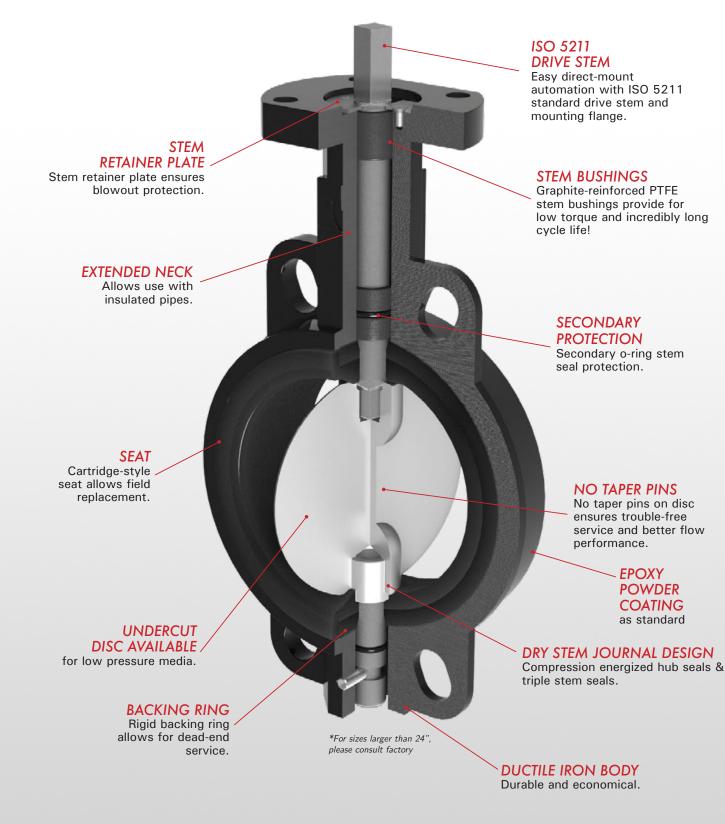
S Series Butterfly Valves Stainless Steel Body, Lug & Wafer Style

Seat & Disc Guide Options & Material Selection

Chemical Compatability & Crossover Guide

28

Handles, Gear Operators, Lockout Devices, & Installation Guidelines

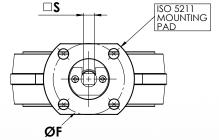


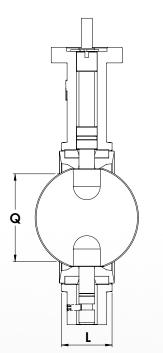
D & S SERIES Ordering Guidelines

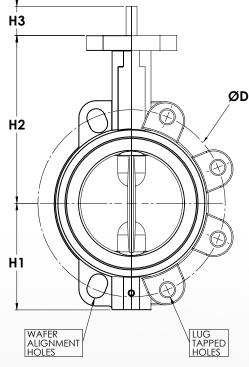
Nominal Size	Flange Style	Body Material	Stem Material	Disc Material	Seat Material	Operator Type	Additional (if required)
4	- L ·	D	- 4 -	- DI -	- E	LH	-
D Series Lug 1½" - 48" D Series Wafer 1½" - 48"	L = Lug W = Wafer	D = Ductile Iron (Optional) $S = CF8M$ (Standard)	4 = 416 SS (Standard "D") 5 = 431 SS (Standard "S")	 A = Aluminum Bronze DI = Nickel Plated Ductile Iron 	$\mathbf{B} = BUNA-N$ $\mathbf{E} = EPDM$	BS = Bare Stem $G = Gear$ Operator	
S Series 2" – 24"		$\mathbf{C} = Cast$ Iron	6 = 17-4PH (14" & Larger)	N = Nylon 11 Coated DI	$\mathbf{V} = FKM$ (Viton)	ILP = Infinite Lever Plate	
			3 = 316 SS (Optional)	<pre>S = A351 CF8M (D Series) Polished A351 CF8M (S Series) T = 6 mil PTFE coating over SS316 PS = Polished A351 CF8M (D Series)</pre>	PE = PTFE over EPDM BEF = Black EPDM Food Grade WE = White EPDM Food Grade HT = High Temp. EPDM SR = Synthetic Rubber SL = Silicone WR = Wear Resistant EPDM	LH = Lever Handle	
			Example A	ove: 4" L-D-4-DI-E-LH is EPDM Seat, Lever C	NP = Neoprene 4-inch Lug-Style, DI Body, 416	55 Stem, Nickel-Plated	

D Series Butterfly Valves Features & Benefits

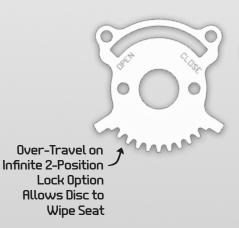
Ductile Iron Body - Lug & Wafer Styles




D Series Butterfly Valves


- Wafer Ductile Iron Body sizes 1.5" 48"
- Lug Ductile Iron Body sizes 1.5" 48"
- Lug-style dead end service capabilities through 12": 200 PSI uni-directional (Designated with flow arrow) 100 PSI bi-directional
- Install between Standard ANSI class 125/150 flanges
- Wafer also compatible with PN10/PN16 flanges
- ISO 5211 square drive shaft for easy automation
- Conforms to MSS-SP-67, MSS-SP-25, API-609
- Designed for blowout-proof service
- High-Cv slim disc & 2-piece stem design 1.5"-12"
- Field repairable
- Vacuum service capable 1.5"-12" to below 10 microns
- Malleable Iron Handles available
- Cast Iron Gear Operators available

D Series Butterfly Valves Dimensions

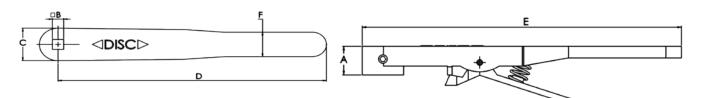

Ductile Iron Butterfly Valves

_																					
	Size	L		(Ç	Ø	D	Lug Taps	Wafer	Holes	H	1	H	2	Н	3	🗆 S		ØF		100
in	mm	in	mm	in	mm	in	mm	SAE Thread	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	ISO
1½	DN40	1.3	33	0.8	21	3.88	98.5	¹ /2"- 13 UNC	4 × 0.7	4 × 18	2.5	64	4.9	124	1.18	30	0.354	9	1.969	50	F05
2	DN50	1.7	43	1.1	29	4.75	120.7	4 × ⁵ /8" -11 UNC	4 × 0.9	4 x 22	2.6	66	5.1	130	1.18	30	0.354	9	1.969	50	F05
2½	DN65	1.8	46	1.8	45	5.50	139.7	4 × ⁵ /8" -11 UNC	4 × 0.7	4 × 18	3.2	81	5.6	142	1.18	30	0.354	9	1.969	50	F05
3	DN75	1.8	46	2.5	62	6.00	152.4	4 × ⁵ /8" -11 UNC	4 × 0.7	4 × 18	3.5	89	5.8	147	1.18	30	0.354	9	1.969	50	F05
4	DN100	2.0	52	3.5	89	7.50	190.5	8 × ⁵ /8" -11 UNC	4 × 0.7	4 × 18	4.3	109	6.7	170	1.18	30	0.433	11	2.756	70	F07
5	DN125	2.2	56	4.6	116	8.50	215.9	8 x ³ /4" -10 UNC	4 × 0.9	4 x 22	4.8	122	7.4	188	1.18	30	0.551	14	2.756	70	F07
6	DN150	2.2	56	5.7	145	9.50	241.3	8 x ³ /4" -10 UNC	4 × 0.9	4 x 22	5.4	137	8.0	203	1.18	30	0.551	14	2.756	70	F07
8	DN200	2.4	60	7.8	197	11.75	298.5	8 × ³ /4" -10 UNC	4 × 1.0	4 × 26	6.7	170	9.4	239	1.57	40	0.669	17	4.016	102	F10
10	DN250	2.7	68	9.8	248	14.25	362.0	12 x ⁷ /8" -9 UNC	4 × 1.0	4 × 26	7.9	201	10.7	272	1.57	40	0.866	22	4.016	102	F10
12	DN300	3.1	78	11.7	298	17.00	431.8	12 x ⁷ /8" -9 UNC	4 × 1.0	4 × 26	9.3	236	12.0	305	1.57	40	0.866	22	4.016	102	F10
14	DN350	3.1	78	—	—	18.75	476.3	12 × 1" -8 UNC	_	—	10.3	262	13.0	330	1.57	40	0.866	22	4.016	102	F10
16	DN400	4.0	102	—	—	21.25	539.8	16 × 1" -8 UNC	_	_	11.8	300	14.2	361	2.00	51	1.063	27	5.512	140	F14
18	DN450	4.5	114	—	_	22.75	577.9	$16 \times 1 \ ^{1}\!/\!8^{\prime\prime}$ -7 UNC	_	_	12.8	325	15.6	396	2.00	51	1.063	27	5.512	140	F14
20	DN500	5.0	127	—	—	25.00	635.0	$20 \times 1 \ ^{1}\!/\!8^{\prime\prime}$ -7 UNC	_	_	14.2	361	17.3	439	2.52	64	1.063	27	6.496	165	F16
24	DN600	6.1	154	_	—	29.50	749.3	$20 \times 1 \ ^{1}\!\!/4"$ -7 UNC	_	_	16.5	419	19.7	500	2.76	70	1.417	36	6.496	165	F16

Optional Infinite Locking Plates

Va	lve Sizes	ILP	ILP
in	mm	Plate	Arm
1.5-3	DN40-75	02A	07S
4	DN100	02/02A	03/03S
5-6	DN125-150	02/02A	04/04S
8*	DN200*	03/03A	05/05S
10-12*	0-12* DN250-300*		06/06S

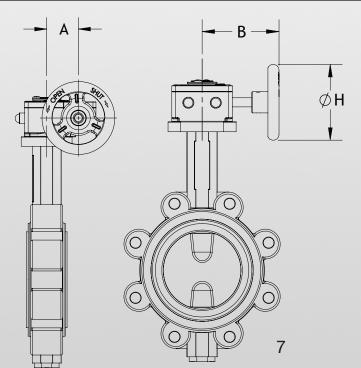
*Recommended operation with a gear operator or an actuator for sizes 8"-12"


Locking Arm (Included w/ Plate)

The **standard** 10-position throttle plate has grooves that allow the handle to snap in place for repeatability and to prevent unintentional movement of the disc.

For even more control, **Infinite Lever Plates** (**ILP**) and arms are available, which allow the valve to be fixed in place with a bolt at any position. It is important to note that the ILP plates and locking arms can be padlocked in the full open and full closed positions only, to prevent tampering or accidental operation.

D Series Butterfly Valves Gear and Handle Options


Malleable Iron Handles (w/ Standard Notch Plate)

Handle	Valve Sizes		A		_ f	B C		D		E		F		Weight		
Part #	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lbs	kg
HND-M01	1.5-3	DN50-75	1.0	26	0.35	9.0	1.3	33	8.9	225	9.4	240	1.1	28	2.4	1.1
HND-M02	4	DN100	1.0	26	0.43	11.0	1.4	35	10.2	260	11.0	280	1.1	28	2.6	1.2
HND-M03	5-6	DN125-150	1.0	26	0.55	14.0	1.4	35	10.2	260	11.0	280	1.1	28	2.9	1.3
HND-M04	8*	DN200*	1.2	30	0.67	17.0	1.9	49	14.0	355	15.2	385	1.3	32	5.7	2.6
HND-M05	10-12*	DN250-300*	1.2	30	0.87	22.0	1.9	49	14.0	355	15.2	385	1.3	32	5.7	2.6

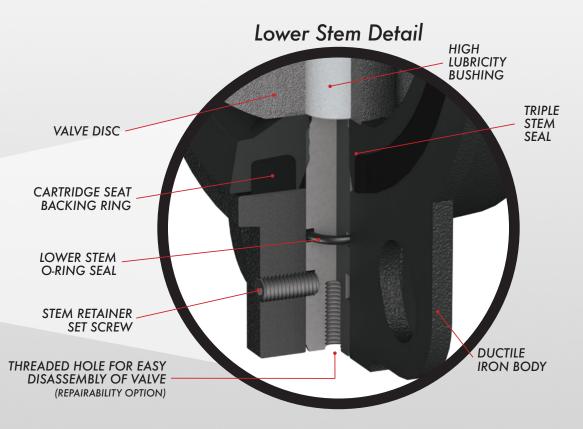
*Recommended operation with a gear operator or an actuator for sizes 8"-12"

Cast Iron Gear Operators

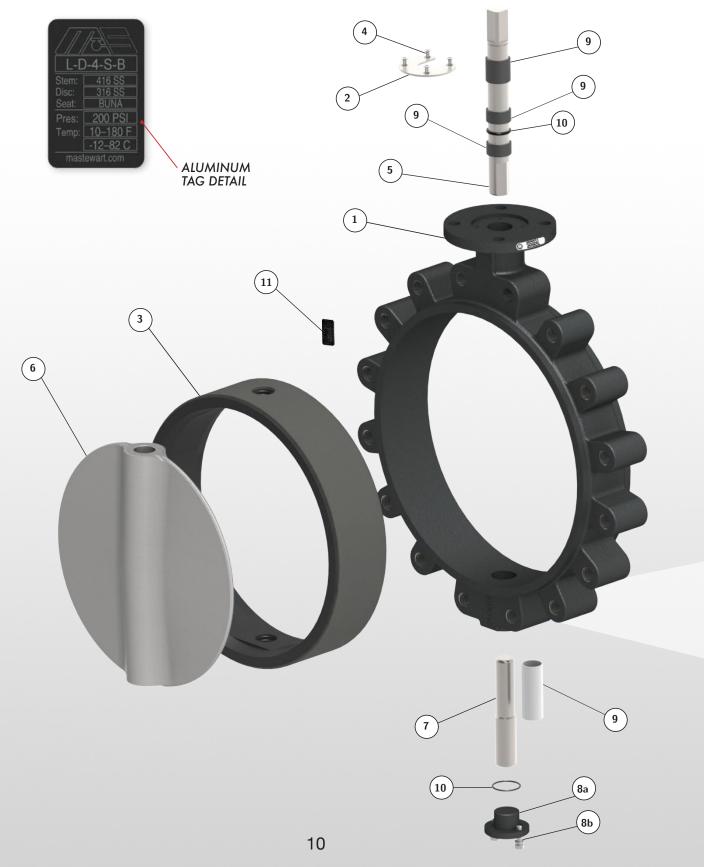
Valv	ve Sizes	Gear	А		В		ØН		Weight		Max Torque		Rim Pull @ Max DP	
in	mm	Operator	in	mm	in	mm	in	mm	lbs	kg	in-Ibs	Nm	lbf	Ν
1.5–3	DN50-75	MA-GO-01A-ISO	1.7	43	3.2	81	6	152	2.8	1.3	1330	150	13	58
4	DN100	MA-GO-01B-ISO	2.5	43	3.2	81	6	152	2.8	1.3	1330	150	20	89
5-6	DN125-150	MA-GO-02-ISO	2.5	64	3.6	91	6	152	5.6	2.5	1770	200	46	205
8	DN200	MA-GO-03A-ISO	2.4	61	4.7	119	10	254	11.5	5.2	4425	500	36	160
10	DN250	MA-GO-03B-ISO	2.4	61	4.7	119	10	254	11.5	5.2	4425	500	74	329
12-14	DN300-350	MA-GO-04-ISO	2.6	66	6.5	165	12	305	22.2	10.1	8850	1000	86	383
16-18	DN400-450	MA-GO-05-ISO	3.5	89	7.9	201	16	406	40.8	18.5	15900	1800	102	454
20	DN500	MA-GO-06-ISO	5.0	127	10.1	257	16	406	78.1	35.4	30090	3400	107	476
24	DN600	MA-GO-07-ISO	6.1	155	12.4	315	16	406	101	45.8	39825	4500	127	565

www.mastewart.com

D Series Butterfly Valves (1.5"-12") Exploded View

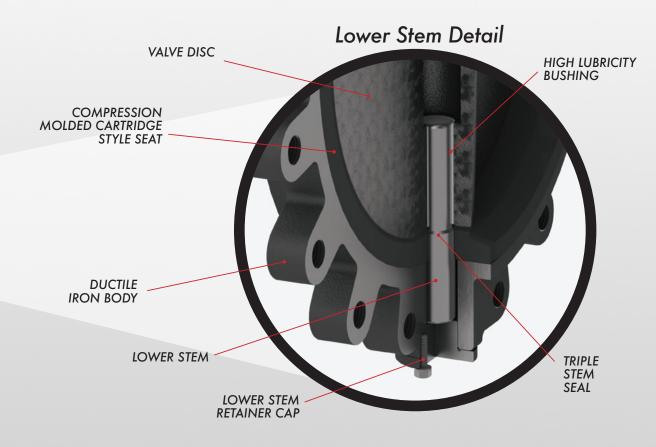


D Series Butterfly Valves (1.5"-12") Materials and Stem Details


Bill of Materials

Item	Description	Materials
1	Body	Ductile Iron ASTM A536
2	Stem Retainer	Carbon Steel, Plated
3	Seat	See Pg 24 or 25
4	Stem Retainer Screws	Carbon Steel, Plated
5	Upper Stem	Stainless Steel ASTM A582, Alloy 416, 316SS Option
6	Disc	See Pg 26 or 27
7	Lower Stem	Stainless Steel ASTM A582, Alloy 416, 316SS Option
8	Lower Stem Retainer	Carbon Steel, Plated
9	Bushing	PTFE/Graphite
10	O-Ring	EPDM, BUNA-N, Fluoroelastomer
11	Nameplate Tag	Aluminum (see detail)

D Series Butterfly Valves (14"-24") Exploded View



D Series Butterfly Valves (14"-24") Materials and Stem Details

Bill of Materials

ltem	Description	Materials
1	Body	Ductile Iron ASTM A536
2	Stem Retainer	Carbon Steel, Plated
3	Seat	See Pg 24 or 25
4	Stem Retainer Screws	Carbon Steel, Plated
5	Upper Stem	Stainless Steel ASTM A582, Alloy 416 or 410, 316SS Option
6	Disc	See Pg 26 or 27
7	Lower Stem	Stainless Steel ASTM A582, Alloy 416 or 410, 316SS Option
8a	Lower Stem Retainer	Ductile Iron ASTM A536
8b	Lower Stem Retainer Bolts and Washers	Carbon Steel, Plated
9	Bushing	PTFE/Graphite
10	O-Ring	EPDM, BUNA-N, Fluoroelastomer
11	Nameplate Tag	Aluminum (see detail)

Seating Torques (in-lbs)

		STANDA	RD SEAT		UNDERCUT DISC	l	PTFE SEAT	г
Size				Pressu	Ire Differential (ΔP in PSI)			
(in)	50 ΔP	100 AP	150 ΔP	200 ΔP	50 ΔP	50 ΔP	100 AP	150 ΔP
1½	105	111	117	124	—	_	—	—
2	105	111	117	124	—	144	148	150
2½	133	143	159	184	—	161	165	168
3	191	203	218	247	—	299	304	310
4	283	316	343	373	200	392	409	425
5	428	479	540	631	330	771	793	814
6	636	720	799	909	440	1074	1113	1151
8	1239	1273	1411	1505	820	2106	2177	2257
10	2567	2710	2832	3105	1150	3151	3301	3452
12	3153	3307	3671	4305	2400	4186	4443	4691
14	3858	4138	4337	_				
16	5413	6027	7466	—				
18	6833	8121	10090		Consu	lt Manufacti	urer	
20	9820	10527	13367					
24	15909	17005	21041					

The torque values listed above do not include a safety factor. It is recommended that a safety factor of 20% be added to these numbers for standard self-lubricating service. For water, dry air, solvents, abrasives, powder, and dust service, see service factor guide chart on next page.

Service Factor Rating

Service Condition	Service Type	Media Type	Safety Factor	Multiplier
1	Ideal	Lubricating Oil	20%	1.20
2	Normal	Water	30%	1.30
3	Severe	Dry Air, Solvents	50%	1.50
4	Extreme	Abrasives	100%	2.00

This service factor chart is a suggested guide only. Actual service conditions will vary due to dynamic flow conditions and may require adjustments to the applied safety factor.

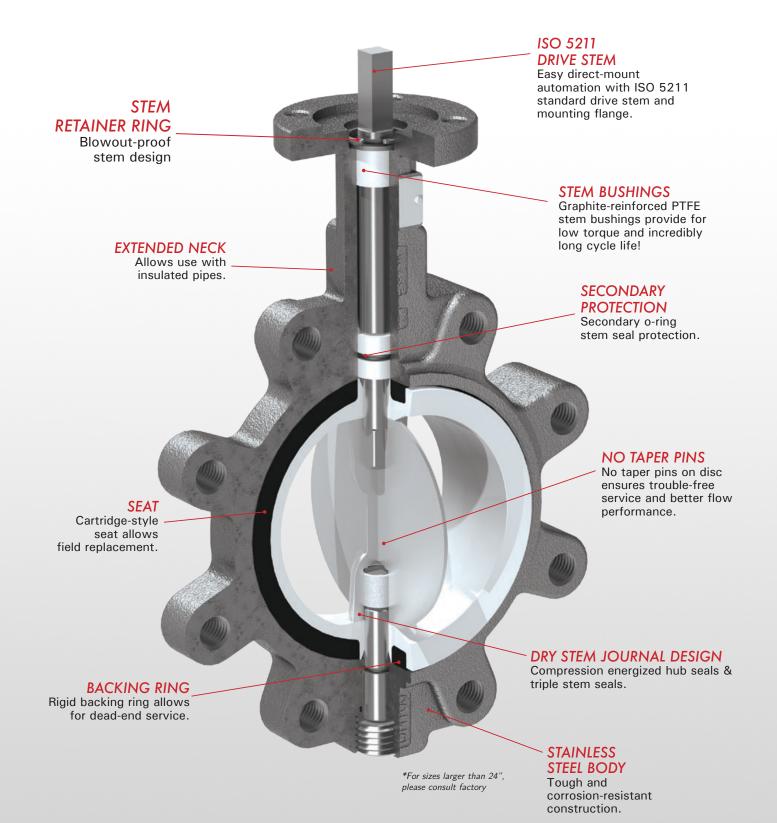
Pressure Rating

	D SERIES								
Size	1.5"–12"	14"–48"	2"–12" (PTFE)						
Bidirectional Shutoff	200 PSI	150 PSI	150 PSI						

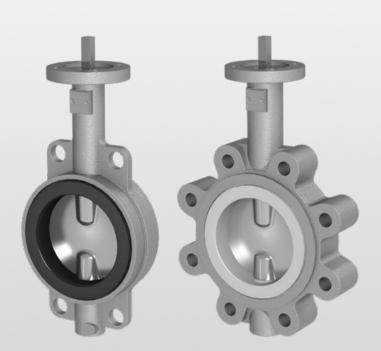
Cv Values Valve Sizing Coefficients (US-GPM/AP)

		0							
Size					Disc Positio	n			
(in)	90°	80°	70°	60°	50°	40°	30°	20°	10°
1½	99	76	59	41	32	16	7	1.8	0.1
2	132	120	86	58	42	22	11	2	0.1
2½	256	202	142	98	65	37	20	4	0.2
3	505	392	198	125	86	38	21	8	0.3
4	936	702	401	232	140	77	35	14	0.4
5	1109	922	625	392	232	132	62	29	0.9
6	2531	2009	1105	611	372	203	96	42	2.1
8	4812	3555	1901	1211	726	401	191	65	3.2
10	7498	6183	3740	2065	1232	695	321	151	3.9
12	9928	8805	5905	3178	1909	1065	495	234	5
14	12915	10854	7220	4560	2771	1554	712	338	5.8
16	16626	14961	9909	6289	3780	2133	980	460	8
18	23705	19743	13178	8325	5029	2822	1301	613	10
20	27915	25396	16928	10698	6468	3623	1678	790	12
24	43212	39206	26128	16550	9807	5567	2521	860	21

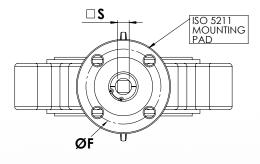
The valve sizing coefficient is referred to as "Cv" and is the rate of water flow in gallons per minute (GPM) through a given opening at a pressure drop (ΔP) of 1 PSI at standard room temperature. The recommended angle of opening for valve sizing is between 50° and 70° open.


Weights

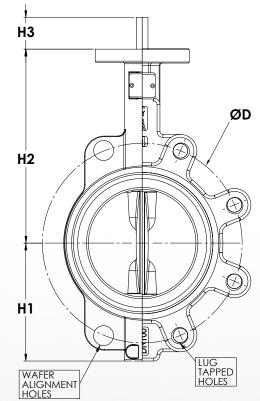
	Size Wafe		fer	L	ug		idual ndle		idual perator
in	mm	lbs	kg	lbs	kg	lbs	kg	lbs	kg
1½	DN40	4.2	1.9	—	—	2.4	1.1	2.8	1.3
2	DN50	4.2	1.9	5.2	2.4	2.4	1.1	2.8	1.3
2½	DN65	5.5	2.5	6.5	3.0	2.4	1.1	2.8	1.3
3	DN75	6.1	2.8	7.3	3.3	2.4	1.1	2.8	1.3
4	DN100	9.0	4.1	12.5	5.7	2.6	1.3	2.8	1.3
5	DN125	12.6	5.7	16.9	7.7	2.9	1.3	5.6	2.5
6	DN150	15.1	6.9	20.4	9.3	2.9	1.3	5.6	2.5
8	DN200	27.0	12.3	33.3	15.1	5.7	2.6	11.5	5.2
10	DN250	40.8	18.5	54.5	24.7	5.7	2.6	11.5	5.2
12	DN300	60.7	27.6	76.2	34.6	5.7	2.6	22.2	10.1
14	DN350	86.9	39.4	131.5	59.7			22.2	10.1
16	DN400	121.4	55.1	194.8	88.4	_	_	40.8	18.5
18	DN450	154.2	69.9	235.5	106.8		_	40.8	18.5
20	DN500	208.5	94.6	340.5	154.4	_	_	78.1	35.4
24	DN600	387.9	176.0	503.0	228.2	—	—	101	45.8


S Series Butterfly Valves Features & Benefits

Stainless Steel Body - Lug & Wafer Styles




S Series Butterfly


- Wafer Stainless Steel Body sizes 2" 24"
- Lug Stainless Steel Body sizes 2" 24"
- Lug-style dead end service capabilities through 12": 200 PSI uni-directional 100 PSI bi-directional (Designated w/ flow arrow)
- Install between Standard ANSI class 125/150 flanges
- ISO 5211 square drive shaft for easy automation
- Conforms to MSS-SP-67, MSS-SP-25, API-609
- Designed for blowout-proof service
- High-Cv slim disc & 2-piece stem design 2"-12"
- Field repairable
- Vacuum service capable 2" thru 12" to 10 microns
- 304 SS Handles available
- Cast Iron Gear Operators available

S Series Butterfly Valves Dimensions

Stainless Steel Butterfly Valves

	Size	l	_	Ç	2	Ø	D	Lug Taps	Wafer	Wafer Holes		11	Н	2	H3		🗆 S 🕠		🗌 S		ØF		100
in	mm	in	mm	in	mm	in	mm	SAE Thread	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	ISO		
2	DN50	1.7	43	1.1	29	4.75	120.7	4 × 5/8"-11 UNC	4 × 0.9	4 x 22	2.6	66	5.1	130	1.18	30	0.354	9	1.969	50	F05		
2½	DN65	1.8	46	1.8	45	5.50	139.7	4 x ⁵ / ₈ "-11 UNC	4 × 0.7	4 × 18	3.2	81	5.6	142	1.18	30	0.354	9	1.969	50	F05		
3	DN75	1.8	46	2.5	62	6.00	152.4	4 x 5/8" -11 UNC	4 × 0.7	4 × 18	3.5	89	5.8	147	1.18	30	0.433	11	1.969	50	F05		
4	DN100	2.0	52	3.5	89	7.50	190.5	8 x 5/8"-11 UNC	4 × 0.7	4 × 18	4.3	109	6.7	170	1.18	30	0.433	11	2.756	70	F07		
5	DN125	2.2	56	4.6	116	8.50	215.9	8 x ³ / ₄ "-10 UNC	4 × 0.9	4 x 22	4.8	122	7.4	188	1.18	30	0.551	14	2.756	70	F07		
6	DN150	2.2	56	5.7	145	9.50	241.3	8 x ³ / ₄ " -10 UNC	4 × 0.9	4 x 22	5.4	137	8.0	203	1.18	30	0.551	14	2.756	70	F07		
8	DN200	2.4	60	7.8	197	11.75	298.5	8 × ³ / ₄ " -10 UNC	4 × 1.0	4 × 26	6.7	170	9.4	239	1.57	40	0.669	17	4.016	102	F10		
10	DN250	2.7	68	9.8	248	14.25	362.0	12 x ⁷ / ₈ "-9 UNC	4 × 1.0	4 × 26	7.9	201	10.7	272	1.57	40	0.866	22	4.016	102	F10		
12	DN300	3.1	78	11.7	298	17.00	431.8	12 x ⁷ /8"-9 UNC	4 × 1.0	4 × 26	9.3	236	12.0	305	1.57	40	0.866	22	4.016	102	F10		
14	DN350	3.1	78	_	_	18.75	476.3	12 × 1" -8 UNC	_		10.3	262	13.0	330	1.57	40	0.866	22	4.016	102	F10		
16	DN400	4.0	102	_	_	21.25	539.8	16 × 1" -8 UNC	—	—	11.8	300	14.2	361	2.00	51	1.063	27	5.512	140	F14		
18	DN450	4.5	114	_	_	22.75	577.9	16 x1 1/8"-7 UNC	_	—	12.8	325	15.6	396	2.00	51	1.063	27	5.512	140	F14		
20	DN500	5.0	127	_	—	25.00	635.0	20 x1 1/8"-7 UNC	_	—	14.2	361	17.3	439	2.52	64	1.063	27	6.496	165	F16		
24	DN600	6.1	154	_	_	29.50	749.3	$20 \times 1 {}^{1\!/_{\! 4}}"$ -7 UNC	_	_	16.5	419	19.7	500	2.76	70	1.417	36	6.496	165	F16		

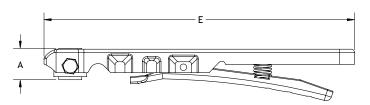
Optional Infinite Locking Plates

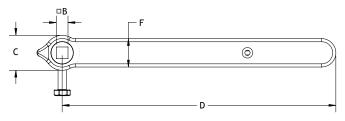
Va	lve Sizes	ILP	ILP
in	mm	Plate	Arm
2-2.5	DN50-65	02A	07S
3	DN75	02A	03S
4	DN100	02A	03S
5-6	DN125-150	02A	04S
8	DN200*	03A	05S
10-12	DN250-300*	03A	06S

*Recommended operation with a gear operator or an actuator for sizes 8"–12"

Optional Infinite J Lever Plate

Locking Arm (Included w/ Plate)

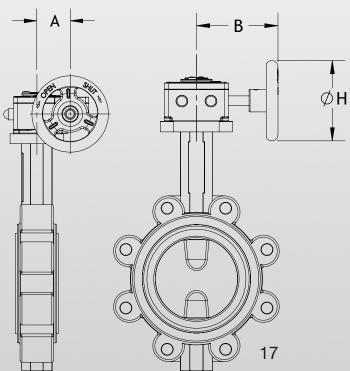



The **standard** 10-position throttle plate has grooves that allow the handle to snap in place for repeatability and to prevent unintentional movement of the disc.

For even more control, **Infinite Lever Plates** (**ILP**) and arms are available, which allow the valve to be fixed in place with a bolt at any position. It is important to note that the ILP plates and locking arms can be padlocked in the full open and full closed positions only, to prevent tampering or accidental operation.

Rev: 03/18/22

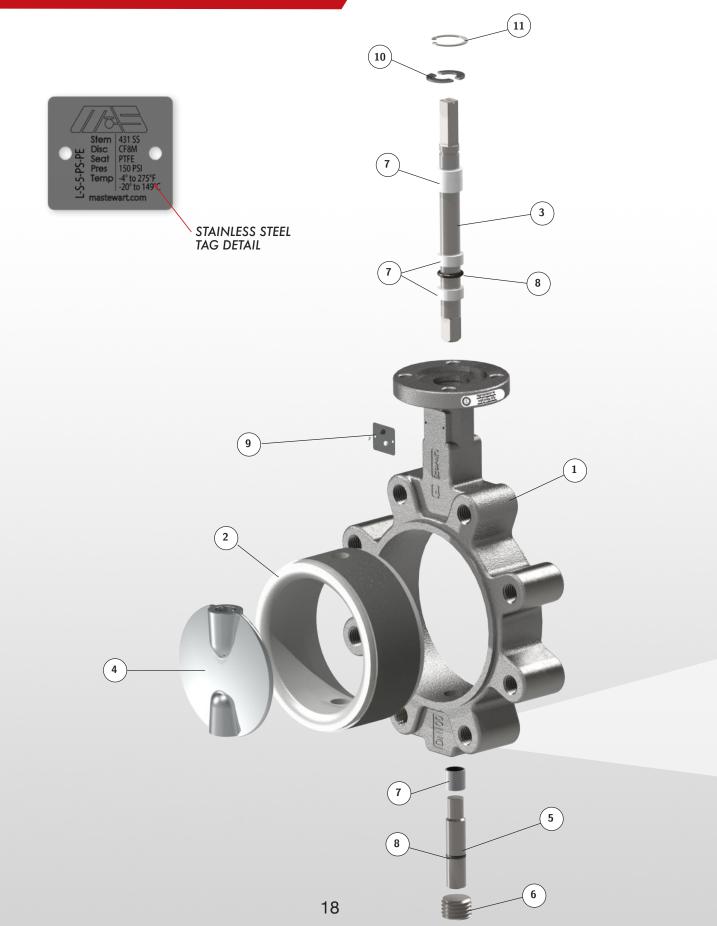
S Series Butterfly Valves Gear and Handle Options


Stainless Steel Handles (w/ Standard Notch Plate)

Handle	Valve Sizes		А		E	⊓В		С		D		E		F		Weight	
Part #	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lbs	kg	
HND-S01	2-2.5	DN50-75	1.1	28	0.35	9.0	1.3	34	10.2	260	11.2	285	1.1	27	2.2	1.0	
HND-S02	3-4	DN100	1.1	28	0.43	11.0	1.3	34	10.2	260	11.2	285	1.1	27	2.2	1.0	
HND-S03	5-6	DN125-150	1.1	28	0.55	14.0	1.3	34	10.2	260	11.2	285	1.1	27	2.2	1.0	
HND-S04	8*	DN200*	1.2	30	0.67	17.0	1.9	49	14.7	373	15.7	400	1.3	33	5.5	2.5	
HND-S05	10-12*	DN250-300*	1.2	30	0.87	22.0	1.9	49	14.7	373	15.7	400	1.3	33	5.5	2.5	

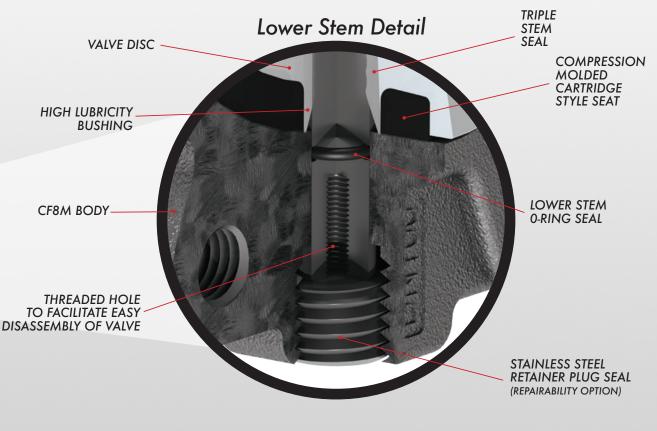
*Recommended operation with a gear operator or an actuator for sizes 8"-12"

Cast Iron Gear Operators

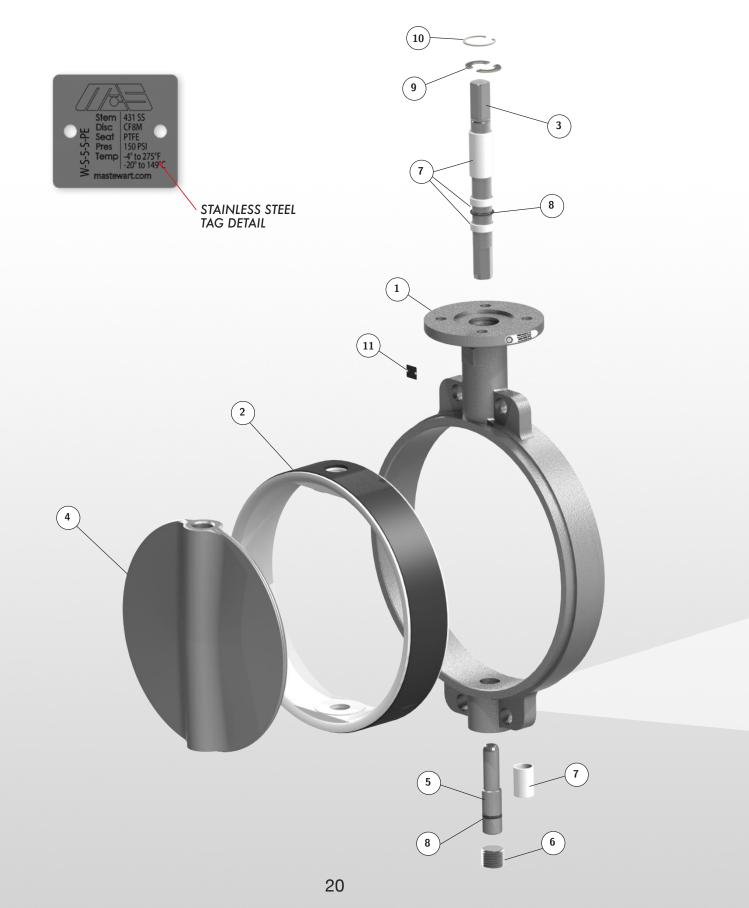

Valv	ve Sizes	Gear Operator	А		В		ØН		Weight		Max Torque		Rim Pull @ Max DP	
in	mm	Operator	in	mm	in	mm	in	mm	lbs	kg	in-lbs	Nm	lbf	Ν
1.5–3	DN50–75	MA-GO-01A-ISO	1.7	43	3.2	81	6	152	2.8	1.3	1330	150	13	58
4	DN100	MA-GO-01B-ISO	2.5	43	3.2	81	6	152	2.8	1.3	1330	150	20	89
5–6	DN125-150	MA-GO-02-ISO	2.5	64	3.6	91	6	152	5.6	2.5	1770	200	46	205
8	DN200	MA-GO-03A-ISO	2.4	61	4.7	119	10	254	11.5	5.2	4425	500	36	160
10	DN250	MA-GO-03B-ISO	2.4	61	4.7	119	10	254	11.5	5.2	4425	500	74	329
12–14	DN300-350	MA-GO-04A-ISO	2.6	66	6.5	165	12	305	22.2	10.1	8850	1000	86	383
16-18	DN400-450	MA-GO-05B-ISO	3.5	89	7.9	201	16	406	40.8	18.5	15900	1800	102	454
20	DN500	MA-GO-06B-ISO	5.0	127	10.1	257	16	406	78.1	35.4	30090	3400	107	476
24	DN600	MA-GO-07-ISO	6.1	155	12.4	315	16	406	101	45.8	39825	4500	127	565

www.mastewart.com

S Series Butterfly Valves (2"-12") Exploded View

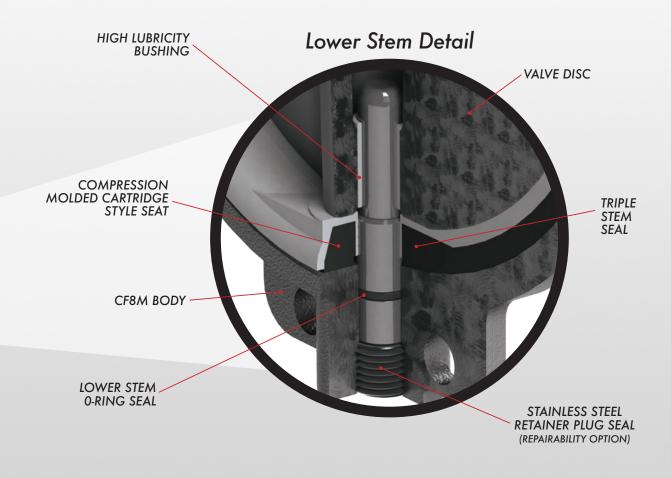


S Series Butterfly Valves (2"-12") Materials and Stem Detail


Item	Description	Materials
1	Body	ASTM A351 grade CF8M
2	Seat	See Pg 24 or 25
3	Upper Stem	ASTM A276 431, 316SS Option
4	Disc	See Pg 26 or 27
5	Lower Stem	ASTM A276 431, 316SS Option
6	Lower Stem Retainer	304 SS
7	Stem Bushing	PTFE lined fiberglass
8	O-ring	Fluoroelastomer
9	Nameplate Tag	Stainless Steel (see detail)
10	Split Washer	1Cr13
11	Snap Ring	304 SS

Bill of Materials

S Series Butterfly Valves (14"-24") Exploded View



S Series Butterfly Valves (14"-24") <u>Materials and Stem Detail</u>

ltem	Description	Materials
1	Body	ASTM A351 grade CF8M
2	Seat	See Pg 24 or 25
3	Upper Stem	ASTM A276 431, 316SS Option
4	Disc	See Pg 26 or 27
5	Lower Stem	ASTM A276 431, 316SS Option
6	Lower Stem Retainer	304 SS
7	Stem Bushing	PTFE lined fiberglass
8	O-ring	Fluoroelastomer
9	Split Washer	1Cr13
10	Snap Ring	304 SS
11	Nameplate Tag	Stainless Steel (see detail)

Bill of Materials

		STANDAI	RD SEAT		UNDERCUT DISC		PTFE SEAT	Г			
Size				Pressur	sure Differential (ΔP in PSI)						
(in)	50 ΔP	100 AP	150 AP	200 AP	50 ΔP	50 ΔP	100 AP	150 AP			
2	105	111	117	124	_	144	148	150			
2½	133	143	159	184	—	161	165	168			
3	191	203	218	247	_	299	304	310			
4	283	316	343	373	200	392	409	425			
5	428	479	540	631	330	771	793	814			
6	636	720	799	909	440	1074	1113	1151			
8	1239	1273	1411	1505	820	2106	2177	2257			
10	2567	2710	2832	3105	1150	3151	3301	3452			
12	3153	3307	3671	4305	2400	4186	4443	4691			
14	3858	4138	4337	_							
16	5413	6027	7466	—							
18	6833	8121	10090	—	Const	ult Manufac	turer				
20	9820	10527	13367	_							
24	15909	17005	21041	_							

Seating Torques (in-lbs)

The torque values listed above do not include a safety factor. It is recommended that a safety factor of 20% be added to these numbers for standard self-lubricating service. For water, dry air, solvents, abrasives, powder, and dust service, see service factor guide chart on next page.

Service Factor Rating

Service Condition	Service Type	Media Type	Safety Factor	Multiplier
1	Ideal	Lubricating Oil	20%	1.20
2	Normal	Water	30%	1.30
3	Severe	Dry Air, Solvents	50%	1.50
4	Extreme	Abrasives	100%	2.00

This service factor chart is a suggested guide only. Actual service conditions will vary due to dynamic flow conditions and may require adjustments to the applied safety factor.

Pressure Rating

	S SERIES						
Size	2"–12"	14"-48"	2"–12" (PTFE)				
Bidirectional Shutoff	200 PSI	150 PSI	150 PSI				

Size				l	Disc Positio	n					
(in)	90°	80°	70°	60°	50°	40°	30°	20°	10°		
2	132	120	86	58	42	22	11	2	0.1		
2½	256	202	142	98	65	37	20	4	0.2		
3	505	392	198	125	86	38	21	8	0.3		
4	936	702	401	232	140	77	35	14	0.4		
5	1109	922	625	392	232	132	62	29	0.9		
6	2531	2009	1105	611	372	203	96	42	2.1		
8	4812	3555	1901	1211	726	401	191	65	3.2		
10	7498	6183	3740	2065	1232	695	321	151	3.9		
12	9928	8805	5905	3178	1909	1065	495	234	5		
14	12915	10854	7220	4560	2771	1554	712	338	5.8		
16	16626	14961	9909	6289	3780	2133	980	460	8		
18	23705	19743	13178	8325	5029	2822	1301	613	10		
20	27915	25396	16928	10698	6468	3623	1678	790	12		
24	43212	39206	26128	16550	9807	5567	2521	860	21		

Cv Values Valve Sizing Coefficients (US-GPM/AP)

The valve sizing coefficient is referred to as "Cv" and is the rate of water flow in gallons per minute (GPM) through a given opening at a pressure drop (ΔP) of 1 PSI at standard room temperature. The recommended angle of opening for valve sizing is between 50° and 70° open.

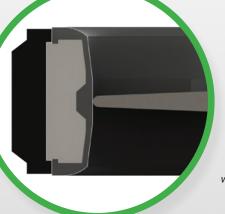
Weights

	Size	Wafer Weight			ug ight		idual 1dle		idual perator
in	mm	lbs	kg	lbs	kg	lbs	kg	lbs	kg
2	DN50	6.0	2.7	10.4	4.7	2.4	1.0	2.8	1.3
2½	DN65	7.5	3.4	11.2	5.1	2.4	1.0	2.8	1.3
3	DN75	8.4	3.8	19.0	8.6	2.4	.9	2.8	1.3
4	DN100	11.5	5.2	21.6	9.8	2.6	.9	2.8	1.3
5	DN125	16.1	7.3	28.4	12.9	2.9	.9	5.6	2.5
6	DN150	18.3	8.3	31.3	14.2	2.9	.9	5.6	2.5
8	DN200	30.4	13.8	45.6	20.7	5.7	2.5	11.5	5.2
10	DN250	44.1	20.0	69.4	31.5	5.7	2.5	11.5	5.2
12	DN300	75.4	34.2	115.3	52.3	5.7	2.5	22.2	10.1
14	DN350	99.0	44.9	170.4	77.3	_	_	22.2	10.1
16	DN400	121.3	55.0	213.2	96.7			40.8	18.5
18	DN450	202.8	92.0	262.8	119.2	—		40.8	18.5
20	DN500	_	_	_		_	_	78.1	35.4
24	DN600	—	_	—	—	—	_	101	45.8

D & S Series Butterfly Valves Seat Material Guide

	Seat Material (Backing Material)	Code	NSF	General Application	Temperature Range at Full Rated Pressure	<i>NOT</i> Recommended For	
	EPDM (Phenolic)	EPDM	NSF 61		-40°F to 275°F (-40°C to 135°C)		
0	White EPDM Food Grade (Phenolic)	WEF	NSF 61	H20, Air, Brine, Abrasives, Phosphates, Esters Ketones, Alkali, Food Compounds, Liquids and Solids, Diluite Inorganic	-40°F to 212°F (-40°C to 100°C)		
	Black EPDM Food Grade (Phenolic)	DM Food Grade BEE NSE 61		Acids, Caustic Soda	-40°F to 230°F (-40°C to 110°C)	Hydrocarbons, Oils, Fats, Dry Air	
	High Temp EPDM (Phenolic)	HT- EPDM	NSF 61	Standard EPDM + Low Pressure Saturated Steam	-4°F to 302°F (-20°C to 150°C)		
	Wear Resistant EPDM (Phenolic)	WR- EPDM	NSF 61	Standard EPDM + Abrasive Products	14°F to 250°F (-40°C to 121°C)		
	BUNA-N (NBR) (Phenolic)	BUNA	NSF 61	Hydrocarbons with less than 40% of aromatics,	10°F to 180°F (-12°C to 82°C)		
	White BUNA Food Grade (Phenolic)	WBF	NSF 61	Natural Gas, Air, H20, Sea Water, Brine, Alcohols, Glycols	-30°F to 230°F (-30°C to 110°C)	Solvents, Benzene, Xylene	
	High Temp BUNA (Hydrogenated NBR) (Phenolic)	HT- BUNA	NSF 61	Standard BUNA + Low Pressure Saturated Steam	-30°F to 330°F (-34°C to 165°C)		
0	VITON (FKM) (Aluminum)	VITON	NSF 372	Hydrocarbons wth high concentration of aromatics, Mineral and Halogenated Acids, Phorforic Acid, Alphatic and Aromatic Ethers	0°F to 300°F (-18°C to 149°C)	Steam, Ketones, Amines, Esters, Alkali	
	PTFE over EPDM (Phenolic)	PTFE/E	NSF 61	Corrosive Products -	-4°F to 275°F (-20°C to 135°C)	Abrasive products,	
	PTFE over VITON (Aluminum) PTFE/V		NSF 61	Solvents	-4°F to 300°F (-20°C to 149°C)	 Fluorine Gases, Alkaline Metals 	

*Material guidelines for reference only. Actual suitability can depend on a combination of temperature, pressure, chemical concentration and other variables.



Seat Material (Backing Material)	Code	NSF	General Application	Temperature Range at Full Rated Pressure	<i>NOT</i> Recommended For	
Natural Rubber (Phenolic)	NR	NSF 61	Abrasive Products	Abrasive Products -55°F to 210°F (-48°C to 99°C)		
Silicone (Phenolic)	SIL	NSF 61	Beverages, Food	-40°F to 400°F (-40°C to 204°C)	Hydrocarbons, Solvents, Steam	
Chlorosulfonated Synthetic Rubber (Phenolic)	CSM	NSF 61	Oxidizing Acids, Chromic Acid, Hydrofluoric Acid, Sulphur Based Acids, Sodium Hypoclonte, ozone	cid, Hydrofluoric Acid, 0°F to 275°F hur Based Acids, Sodium (-18°C to 135°C)		
Neoprene (Phenolic)	NP	NSF 61	Oils, Dilute Mineral Acids, Alkali, Fats	20°F to 200°F (-7°C to 93°C)	Ketones, Concentrated Acids, Solvents for Paint	

Superior Cartridge Seat Design Why a Cartridge Seat Is the Preferred Choice:

Cartridge

Cartridge seat with rigid phenolic backing ring

Feature	Cartridge Seat	Molded Seat	Booted Seat
Replaceable	YES	NO	YES
Ideal for Vacuum Service	YES	YES	NO
Dead End Service Capable	YES	YES	NO
Deformation Resistant	YES	YES	NO
Flange Type Independent	YES	YES	NO

Molded seat permanently bonded to valve body

D & S Series Butterfly Valves Disc Material Guide

NSF372 ONLY

DI-NP

Nickel Plated Ductile Iron Ductile iron disc for strength, coated with Nickel Plating for corrosion resistance and increased abrasion resistance.

Recommend Applications:

Air, Kerosene, Oils, Ketones, Hydrocarbons, Solvents, Detergents, Salts, Concentrated Organic Acids

Not Recommended For: Inorganic Acids, Diluted Organic Acids

NSF61

NSF61

AL-BZ Aluminum Bronze

Strength similar to carbon steel, but with an aluminum oxide layer on the surface for excellent corrosion resistance.

Recommended Applications: Sea Water, Brine, Detergents, Gasoline, Alcohols, Esters, Ketones, Potable Water

Not Recommended For: Acids

NSF61

Stainless steel disc is inherently strong for industrial use and corrosion resistant for a wide range of chemical and environmental applications.

Recommended Applications:

Acetic Acids, Air, Automotive Oils & Fuels, Beer, Freon, Gasoline, Ketones, Oils, Oxygen, Steam, Sea Water, Potable Water

Not Recommended For: Acids

Polished Polished 316 Stainless Steel

All the benefits of stainless steel strength and corrosion resistance, plus a highly polished surface for sanitary applications.

Recommended Applications: Sanitary Applications, Potable Water

Not Recommended For: Acids

NSF61

NY11 Nylon 11 Coated Ductile Iron

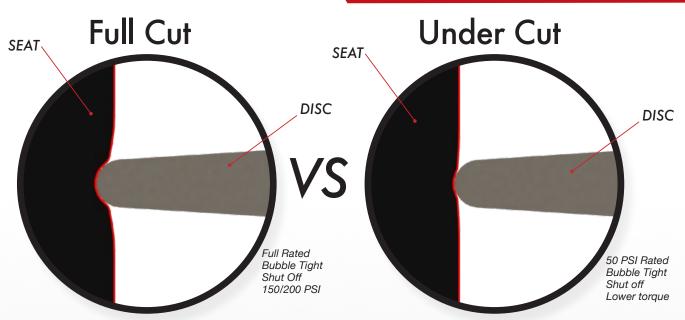
Ductile iron disc for strength, coated with Nylon 11 for corrosion resistance and excellent abrasion resistance.

Recommended Applications:

Inorganic Salts, Alkalis, Most Solvents, Most Organic Acids, Hydrocarbons, Oils, Kerosene, Ketones, Esters, Detergents, Sea Water, Abrasives

Not Recommended For: Inorganic Acids, Phenols, Chlorinated Solvents

PTFE PTFE Coated 316 Stainless Steel


Recommended Applications: Acids, Alcohols, Solvents, Oils, Potable Water

Not Recommended For: Fluorine

NSF61

*Material guidelines for reference only. Actual suitability can depend on a combination of temperature, pressure, chemical concentration and other variables.

Disc Options Full Cut vs. Under Cut & Disc Options

Why Full Cut?

Full cut discs provide bubble tight shut off at 150/200 PSI for a wide variety of applications, such as liquid or gas media

Valve & Disc **Treatment** Options

Passivation

Why passivation treatment?

Passivation is a process by which the inherent corrosion resistance of stainless steel is maximized through a two step process of cleaning and subsequent immersion in an acid bath thereby creating a uniform oxidation layer that optimizes the corrosion resistance.

What's treated?

Disc only Silicone Free

Why silicone free treatment?

Silicone Free cleaning is conducted on valves in order to prevent silicone contamination within processes (such as automotive painting) that are sensitive to silicone. The valves are subsequently sealed within polyethylene bags to prevent recontamination prior to installation.

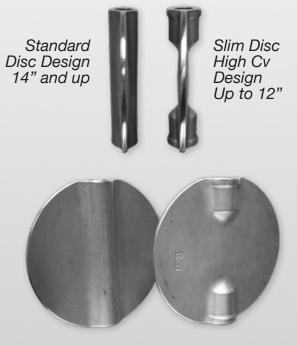
What's treated? Total Valve

Oxygen Clean

Why oxygen clean treatment?

Oxygen cleaning is conducted on valves to prevent the potentially violent oxidation (fire or explosion) of contaminants (most often hydrocarbons) on the surfaces exposed to oxygen within a process. The valves are subsequently sealed within polyethylene bags to prevent recontamination prior to installation.

What's treated? Total Valve


Why Under Cut?

Under cut discs require less torque to operate but are only rated to 50 PSI bubble tight shutoff. common applications are solids dispensing or conveying, or any low pressure process.

Slim Disc Design

What is the advantage of the Slim Disc design?

MA Stewart and Sons' slim disc design minimizes the disc profile to maximize flow. This is especially important for smaller butterfly valves where the disc takes up proportunionally more of the flow path. Slim disc design is standard up to 12" sizes.

Rev: 03/18/22

www.mastewart.com

Crossover Guide

Body			Duct	ile Iron			
Disc	Ductile Iron-I	Nickel Plated	Aluminum-Bronze		316 Stai	Valve Type	
Seat	EPDM	BUNA	EPDM	BUNA	EPDM	BUNA	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	W-D-4-DI-E	W-D-4-DI-B	W-D-4-A-E	W-D-4-A-B	W-D-4-S-E	W-D-4-S-B	Wafer
M. A. Steward & Sond Eld. VALVES AND FITTINGS	L-D-4-DI-E	L-D-4-DI-B	L-D-4-A-E	L-D-4-A-B	L-D-4-S-E	L-D-4-S-B	Lug
Bray	30-11010-119	30-11010-713	30-11010-120	30-11010-684	30-11010-124	30-11010-125	Wafer
	31-11010-119	31-11010-713	31-11010-120	31-11010-684	31-11010-124	31-11010-125	Lug
Centerline	A2-021-05	A2-021-01	A2-061-05	A2-061-01	A2-044-05	A2-044-01	Wafer
	B2-021-05	B2-021-01	B2-061-05	B2-061-01	B2-044-05	B2-044-01	Lug
Demco	NE-C111535_	NE-C111531_	NE-C111435_	NE-C111431_	NE-C112235_	NE-C112231_	Wafer
	NE-C511535_	NE-C511531_	NE-C511435_	NE-C511431_	NE-C512235_	NE-C512231_	Lug
Crimeell	WD-8203	WD-8103	WD-8283	WD-8183	WD-8274	WD-8174	Wafer
Grinnell	LD-8203	LD-8103	LD-8283	LD-8183	LD-8274	LD-8174	Lug
Keystone	AR1-323	AR1-285	AR1-061	AR1-064	AR1-805	AR1-723	Wafer
	AR2-323	AR2-285	AR2-061	AR2-064	AR2-805	AR2-723	Lug
K:t-	5112E	5112B	5122E	5122B	5141E	5141B	Wafer
Kitz	6112E	6112B	6122E	6122B	6141E	6141B	Lug
Mueller	SERIES 51	SERIES 51	87-INB6	87-INB3	87-INH6	87-INH3	Wafer
Steam	SERIES 52	SERIES 52	88-INB6	88-INB3	88-INH6	88-INH3	Lug
	WD-2010	WD-2110	WD-2000	WD-2100	WD-3022	WD-3122	Wafer
NIBCO	LD-2010	LD-2110	LD-2000	LD-2100	LD-3022	LD-3122	Lug

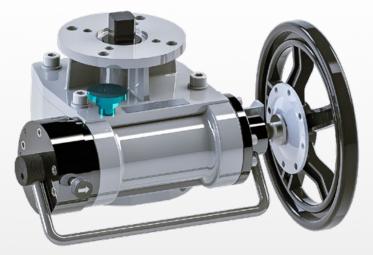
Handles & Throttle Plates

M.A. Stewart & Sons butterfly valves can be readily equipped with lever handles for easy manual operation, which come standard with a 10 position notch plate for quick open/close and throttling. Ductile iron valves are available with malleable iron handles and standard plated carbon steel notch plate. Stainless steel valves are available with 304 SS handles and matching 304 SS notch plates. Lever handles and notch plates are available up through 12" sizes. See pages 9 & 19 for more handle details.

ILP Shown Padlocked in the Fully Closed Position

ILP Shown Bolted in an Intermediate Position

Infinite Locking Plates & Arms


For more adjustable throttling and lockout capability on lever handle operated valves, M.A. Stewart & Sons "ILP" series infinite locking plates are designed to directly replace the standard notch plates. ILP kits come with a 304 SS base plate and arm to allow throttling positions at any angle and lockout at full open or closed. M.A. Stewart & Sons infinite locking plates can be used on either ductile iron or stainless steel butterfly valves up through 12" sizes. See pages 8 & 18 for more details.

Manual Gear Operators All butterfly valve sizes can be outfitted with a manual

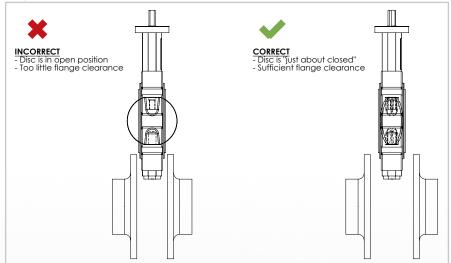
All butterfly valve sizes can be outfitted with a manual gear operator for low-torque operation. M.A. Stewart & Sons' GO Series gear operators are made to direct mount to keep a low profile and simplify installation. Epoxy coated ductile iron housings and malleable iron hand wheels make these gear operators very robust for industrial applications. Chain wheels can be furnished upon request. See pages 9 & 19 for more details.

*Watertight/Submersible gear operators available call for details

Declutch-able Gear Operators

For automated butterfly valves, declutch-able sandwich style gear operators allow for hand wheel operated manual override for maintenance or emergency situations. GOW series declutch-able gear operators direct mount to ISO 5211 standard actuators and to all M.A. Stewart & Sons butterfly valves. Contact factory for more details.

> Gear Operator Padlocked Closed


Lockout Devices

All M.A. Stewart & Sons butterfly valves can be equipped with lockout devices, either handle operated or gear operated. Lockout kits come in plated carbon steel or 304 SS. Contact factory for more details.

Installation Guidelines Please Contact Factory for Full Installation and Operation Manual

Figure 1

Bolting Requirements:

The required bolting information is listed on page 61 (see Table 1), and is designed to provide information regarding size, type, and quantity of bolting recommended for installation of the MA Stewart & Sons Series resilient seated butterfly valves. All recommendations are in accordance with ASME 125/150 specifications. Please note flange bolting is not included with shipment of any valve.

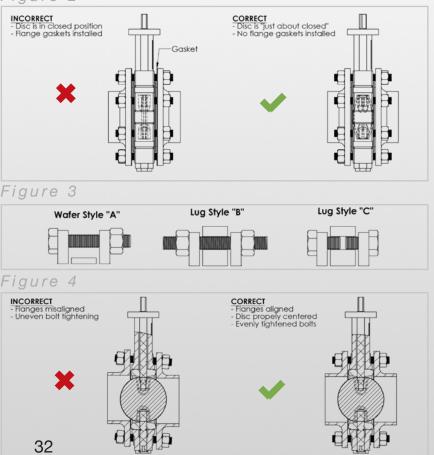
NOTE: For schedule 10 and/or thin wall pipe, extra care must be taken to align seat on flange face to avoid valve damage.

Pre-installation Checklist:

- Remove any protective flange covers from the valve
 Inspect the valve to ensure the flow path is free from dirt and debris
- Be careful that the mating pipeline is also free from dirt and debris, such as rust, pipe scale, welding slag and debris, which can easily damage the seat and disc surfaces
- Any operators, either manual or automated, should be installed PRIOR to installation, to ensure proper alignment of all connecting hardware, and also proper alignment of the disc and valve seat
- Double check the valve identification tag to ensure that the valve materials meet the intended operating conditions. It is always critically important to double check all factors during the installation process

Valve Alignment and Flanging:

Do not install flange gaskets – the butterfly valve seat is designed to mate directly to the flange and provides the seal. Leave the disc in the "just about closed" position and center the disc with the pipeline (See Figure 3 on the right). The next step is to insert all necessary bolts to attach the valve to the flanges, which varies depending on wafer or lug style.

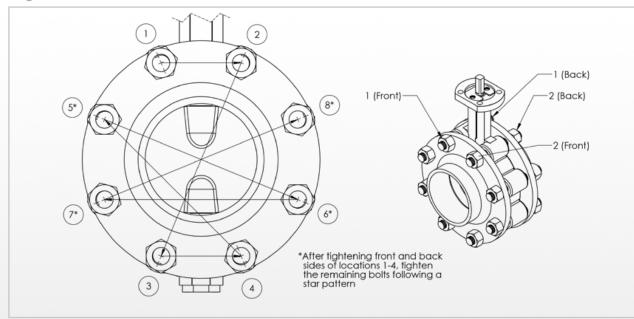

For wafer style valves, loosely install the four bolts that pass through the upper and lower body alignment holes as shown in Figure 4 on the right. Next, insert the remaining flange bolts until all bolts are in position, then hand tighten all bolts. For lug valves, loosely install all bolts between the flanges and the lugs and hand tighten when complete if using style C as shown in Figure 4. If using lug style B, first insert threaded studs, then hand tighten the nuts on each side.

Before tightening the bolts, the valve needs to be positioned so that disc movement is free and unobstructed. Carefully open the disc to the fully open position and verify that there is no interference between the disc and the flanges. In addition, ensure that the flanges are properly aligned during tightening to minimize uneven stress or damage on the valve body or seat (See Figure 5 on the right). It is recommended to follow the Bolt Tightening Procedure on the next page. **WARNING:** PERSONAL INJURY OR PROPERTY DAMAGE MAY RESULT IF THE VALVE IS INSTALLED WHERE SERVICE CONDITIONS EXCEED VALVE RATINGS. PLEASE TAKE SPECIAL CARE TO DOUBLE CHECK ALL FACTORS DURING THE INSTALLATION PROCESS.

Initial Valve Positioning:

Before valve installation, it is important to properly align the mating pipe flanges. To install the valve, create enough space between the two flanges so that the valve body will fit without contact and carefully move the valve into position. Make sure the valve disc is in the "just about closed" position before insertion (See Figure 2 on the right).

Figure 2


Bolt Tightening Sequence:

For lugged style valves (particularly important for PTFE seated valves), it is essential to tighten the flange bolting uniformly on both sides of the valve to assure that the cartridge seat is not forced out of position. Improper tightening can result in leakage through the stem seals. The proper tightening procedure is as follows (See Figure 6 on the right):

 If using a long stud and nuts as in style "B", after positioning the valve between the mating flanges, install the nuts in all positions to hand tight or just until they contact the flange face only. If using bolts as in style "C", tighten the bolts on both sides of the valve until they are hand tight or just contacting the flange face.

Figure 5

- 2. The nuts or bolts immediately on either side of the upper stem (position 1 & 2) should be tightened first. Start with position 1 and tighten bolts/nuts in ½ turn increments, alternating between the front and back flanges.
- 3. Once that position is tight, proceed to tighten the bolt/nut pair opposite from the pair that was just tightened and tighten in the same fashion (position 2).
- 4. Follow the same sequence as in steps 2 and 3 above on the opposite end of the valve near the lower stem (positions 3 & 4).
- 5. Tighten the remaining bolts (if any) in a star pattern around the valve and then re-check all bolts/nuts for tightness in a star pattern for all bolts/nuts (position 5, 6, 7, 8, etc). Make sure to alternate sides and tighten in 1/2 turn increments.

Flange Bolting Requirements:

Table 1

Valve Size	Diameter	Machine & Stud #	Cap Screw #	Bolt Length A	Stud Length B	Cap Screw Length C	Thread Size	Recommended Torque in-Ibs
1.5"	0.500	4	8	3.25	3.75	1.25	1/2"-13UNC	25-30
2"	0.625	4	8	4.00	5.00	1.25	5/8"-11UNC	30-35
2.5"	0.625	4	8	4.25	5.25	1.50	5/8"-11UNC	30-35
3"	0.625	4	8	4.50	5.25	1.50	5/8"-11UNC	35-40
4"	0.625	8	16	5.00	6.00	1.75	5/"-11UNC	35-40
5"	0.750	8	16	5.50	6.50	1.75	3/4"-10-UNC	35-50
6"	0.750	8	16	5.50	6.75	2.00	3/4"-10UNC	35-65
8"	0.750	8	16	6.00	7.00	2.25	3/4"-10UNC	45-80
10"	0.875	12	24	6.75	8.00	2.25	7/8"-9UNC	55-100
12"	0.875	12	24	7.00	8.25	2.50	7/8"-9UNC	65-120
16"	1.000	16	32	8.00	9.00	3.25	1"-8UNC	75-140
18"	1.125	16	32	8.75	10.00	3.50	1-1/8"-7UNC	85-170
20"	1.125	20	40	9.50	10.75	3.75	1-1/8"-7UNC	85-180
24"	1.250	20	40	10.25	12.50	4.50	1-1/4"-7UNC	100-220

NOTE: These torque values are a general recommendation ONLY for minimum tightening torques. Many factors affect tightening requirements including bolt grade, pipe alignment, flange material and others. Field engineering personnel must make final torque value decisions. Call factory for flange bolting requirements up to 48" size.

Certifications Details & Definitions

CE

The Canadian Registration Number

is a number issued by each province or territory of Canada to the design of a boiler, pressure vessel or fitting. The CRN identifies the design has been accepted and registered for use in that province or territory.

NSF/ANSI 61 NSF/ANSI Standard 61

NSF/ANSI 61 sets health effects criteria for many water system components including:

- · Protective barrier materials (cements, paints, coatings)
- Joining and sealing materials (gaskets, adhesives, lubricants)
- Mechanical devices (water meters, valves, filters)
- Pipes and related products (pipe, hose, fittings)
- · Plumbing devices (faucets, drinking fountains)
- Process media (filter media, ion exchange resins)
- · Non-metallic potable water materials

As it relates to valves specifically, it assures that the materials in contact with the flow stream do not introduce toxins into the water in amounts that exceed allowable exposure limits. Some trims excluded. See pg. 4-5

API standard covering the design, materials, face-to-face dimensions, pressure-temperature ratings, and examination, inspection and test requirements for gray iron, ductile iron, bronze, steel, nickel-based alloy, or special alloy butterfly valves.

CE Marking

is a mandatory conformity marking for certain products sold within the European Economic Area (EEA) since 1985. The CE marking is also found on products sold outside the EEA that are manufactured in, or designed to be sold in, the EEA. This makes the CE marking recognizable worldwide even to people who are not familiar with the European Economic Area. It is in that sense similar to the FCC Declaration of Conformity used on certain electronic devices sold in the United States.

The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives.

ISO 5211:

This standard defines a standardized interface system between industrial valves and the part turn actuators used operate them. It details the dimensional requirements for both the mounting flanges on both devices as well as the driving and driven components. This standardization simplifies the design of or eliminates the need for interface components between part turn valves and actuators.

NSF/ANSI 372

is essentially equivalent to Annex G of NSF/ANSI Standard 61 and assures that the materials used in the water contact components of a water system component do not exceed 0.25% lead content. Some trims excluded. See pg. 4-5

MSS SP-67

Industry standard covering the dimensions, design, testing, and marking requirements for butterfly valves.

3-Year Limited Warranty

M.A. Stewart & Sons Ltd., hereinafter referred to as "MAS", provides the following limited 3 year manufacturer's warranty regarding all quarter turn valve products manufactured by MAS. This warranty includes all valves which are manufactured by MAS and only applies to those items which are clearly identified as M.A. Stewart & Sons brand labeled products. The warranty stated herein is expressly in lieu of all other warranties and representations, expressed or implied, or statutory, including, without limitation, the implied warranty of fitness for a particular purpose.

MAS warrants it products to be free from defects in materials and workmanship when these products are used for the purpose for which they were designed and manufactured. MAS does not warrant its products against chemical or stress corrosion or against any other failure other than from defects in materials or workmanship. The warranty period is for thirty-six months from the delivery date by MAS to its customers. Any claims regarding this warranty must be in writing and received by MAS before the last effective date of the warranty period.

Upon receipt of a warranty claim, MAS reserves the right to inspect the product(s) in question at either the field location or at a MAS designated facility. If, after the inspection of the product(s) in question, MAS determines that the purchaser's claim is covered by this warranty, MAS' sole liability and the purchaser's sole remedy under this warranty is limited to the refunding of the purchase price or repair or replacement thereof, at the sole discretion of MAS.

MAS will not be liable for any repairs, labor, material, or other expenses that are not specifically authorized in writing by MAS, and in no event shall

MAS be liable for any direct or consequential damages arising out of any defect from any cause whatsoever. If any MAS products are modified or altered in any way, without the expressed written consent of MAS, the products will not be covered by this warranty.

MAS shall not be liable for any incidental, consequential or other damages, costs, or economic losses, including, without limitation, any resulting from labor charges, delays, vandalism, negligence, fouling caused by foreign material damage from adverse flow conditions, chemicals, or acts of God, or circumstances that are not controllable or reasonably foreseeable by MAS.

This warranty shall be invalidated in all circumstances where MAS, acting reasonably, determines that the product(s) was subject to abuse, misuse, neglect, or improper application, installation, alteration or modification not authorized in writing by MAS. All claims received by MAS beyond the warranty period are invalid and shall not be accepted.

Except for the express written warranty contained herein, MAS does not make any other warranty, condition, guarantee, or indemnity, express or implied, statutory or otherwise, regarding the products including without limitation, to the extent permitted by law, any warranty or merchantability or fitness for a particular purpose. All other warranties, conditions guarantees and indemnities regarding any products are hereby disclaimed, excluded and overwritten.

Head Office

12900–87th Avenue Surrey, British Columbia Canada V3W 3H9 mail to: P.O. 258, Surrey, BC, V3T 4W8 Phone: (604) 594-8431 Toll Free North America: 1-800-594-8431 Fax: (604) 594-4335

Ontario Branch

40 Pugsley Court, Ajax, Ontario L1Z 0L8 Phone: (905) 683-7303 Fax: (905) 683-9108

Alberta Branch

3006 - 51 Avenue, Unit #4 Edmonton, Alberta T6P 0E1 Phone: (780) 436-9051 Fax: (780) 435-0463 Toll Free in Alberta 1-800-232-7376

Quebec Branch

79H Brunswick Blvd. Dollard-des-Ormeaux, Que. H9B 2J5 Phone: (514) 421-6311 Fax: (514) 421-6323

Sales Offices

Calgary, Alberta Phone: (403) 252-7262 Fax: (403) 253-8455

Winnipeg , Manitoba Phone: (204) 837-5604 Fax: (204) 896-1992

Dartmouth, Nova Scotia Phone: (905) 683-7303 Fax: (905) 683-9108

USA Head Office

803 Pressley Road, Suite 105 Charlotte, North Carolina, 28217 Phone: (704) 527-0722 Toll Free: 1-866-582-5837 Fax: (704) 527-0791 Toll Free: 1-866-810-9287

B.K. THORPE COMPANY A MEMBER OF THE M.A. STEWART GROUP

MEMBER OF THE M.A. STEWART GROUP

Long Beach Branch

1811 E. 28th Street Signal Hill, CA 90755 Phone: (562) 595-1811 Toll Free: 1-888-337-7598 Fax: (562) 426-6016

Bakersfield Branch

5225 Gilmore Ave. Bakersfield, CA 93308-6302 Phone: (661) 322-1935 Toll Free: 1-877-258-6166 Fax: (661) 322-6719

Reliable Pipe Supply Co. Inc

1430 National Avenue, P.O. Box 120522 San Diego, CA 92112-0522 Phone: (619) 233-0118 Fax: (619) 544-0162

www.bkthorpe.com

www.mastewartusa.com

MAS-BFV-17.04